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1 Introduction 

This report presents the outcome of Task 5.5, which aimed to refine Optimization methods on 

sample scenarios, consider their applicability for efficient energy management for buildings, and 

provide them for the SEEDS architecture. Task 5.5 was stated as follows:  

 

Task 5.5: Implementation and refinement of self learning algorithms and global 

optimization into the two validation pilots 

Participants: FHG-EAS, CEMOSA, UiS (lead), USALF, CIDAUT 

 

This task will provide the support for the implementation of the Self-learning energy 

management system developed within the SEEDS project into the two validation pilots. 

Some minor re-adjustment or refinement of the algorithms may be required. 

 

The current deliverable presents a refinement of the algorithms for Self-Learning and Optimization 

that were previously described in the documents D5.2 (Vadera et al., 2013) and D5.3 (Esteves, 

2013). The refinement aims to solve specific issues reported in the mentioned reports, namely with 

strategies to improve computational efficiency and accuracy of the algorithms. 

 

In this document we outline necessary procedures to adopt the components to conditions in a 

particular building on two example pilot buildings: one in Madrid, Spain and a second in Stavanger, 

Norway. During the retrofitting process access might be limited to certain system components due 

to constructional, policy and security reasons. We aim to identify and address such major 

components from the perspective of SEEDS building management system. 
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2 Optimization 

The OPT algorithm optimizes the energy consumption constrained by the following comfort 

variables: Temperature, Air quality and Illuminance. Contrary to the temperature and air quality, the 

illuminance has no inertia effect. The control of Illuminance is efficiently implemented by a set of 

straightforward conditions, which does not require the complexity of the PSO neither the need for 

SL. The computational resources necessary for determining the energetically optimized control 

setting for the illuminance are negligible, while for determining the control settings for the 

Temperature and Air quality can be a challenge.  

 

Deliverable D5.3 highlighted the computational challenges tackled by SEEDs. In D5.3 the JAVA 

prototype developed for the Helicopter Garage (details presented in D2.8), was used to study the 

execution time of the different components. The conclusion of the D5.3 was that the majority of the 

execution time is consumed by the repeated calls required by optimisation when executing the SL 

component. Each call to SL component consumed 0.4 s and the execution time of the rest of the 

components is neglect able. The number of calls to the SL by the OPT is directly dependent on the 

number of iterations that are necessary for the OPT to converge and the complexity of the 

optimization problem that OPT has to solve is exponential in the number of control variables. 

Therefore D5.3 stressed the need to develop new strategies that could accelerate the convergence of 

the OPT algorithm and minimising the time SL takes to forecast parameters. A more efficient 

convergence of the OPT algorithm allows SEEDS to simultaneously optimize energy consumption 

using a wider forecast interval and use modest and inexpensive computational resources. 

 

2.1 Strategies for accelerating OPT convergence 

 

SEEDS OPT aims to obtain the optimal control settings for discrete time intervals. In relation to 

forecasting, OPT can take decisions based on just one forecast or based on multiple forecasts. In the 

SEEDS context the first situation is called single step
1
 forecast optimization and the second 

situation is called multistep forecast optimization. Since the single step is a particularization of the 

multistep forecast optimization for just one forecast interval, OPT algorithms are designed for 

multistep forecast and it is decided by the CONTROLLER to call OPT for one or more forecast 

intervals. In the OPT algorithm one particle has d=p*n dimensions, where p is the number of 

control signals and n the number of steps to forecast. OPT defines the number of dimensions 

dynamically in running time according to requested by the CONTROLLER. Therefore, if the 

CONTROLLER calls OPT for only one forecast interval, OPT will instantiate the particles with the 

number of dimensions d=p. This flexibility allows SEEDS to balance the number of steps of 

forecast according to the available time to converge and desired performance. 

 

2.1.1 Smart initialization of the PSO particles 

A PSO particle is an abstract concept that represents a point in a d-dimensional search space. The 

position of this point can be represented by a vector with d-elements, where each element of the 

                                                  
1 The concepts of ”single step” and ”multistep” corresponds to the concepts of ”single level” and ”multilevel” presented 

in the D5.3 (Esteves, 2013) The designation was changed in order to be more intuitive for the reader.  
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vector define a coordinate for this point. The elements of the vector (i.e.: the dimensions of the 

particles) correspond to the signals that SEEDS aims to control. Therefore, one coordinate (i.e.: one 

element of the vector) of a particle position corresponds to the value of one control setting in a 

SEEDS actuator. The PSO algorithm requires initial values for the positions of the particles. The 

choice of the initial positions for the PSO particles can greatly influence the speed of the 

convergence, especially in a high-dimensional search space (Richards and Ventura 2004). In D5.3 

(Esteves, 2013), the selection of the initial values of the PSO particles (i.e.: value of the actuators) 

was random. As a consequence, it was observed that the number of interactions required to 

converge was very high when using a random initialization method.  

Since some of the SEEDS equipment has inertia (e.g.: thermal inertia) it makes sense to initialize 

some particles with positions that corresponded to the optimum computed in the last interval. We 

observed that in most circumstances, the solution for the next interval is not radically different from 

the optimum found in the previous interval.  

Comparing with the random method, the initialization of particles with the optimum solution found 

in the last interval has another considerable advantage. This is explained by a characteristic of the 

PSO: it keeps in memory the best solution found during the execution of the algorithm. Therefore, 

the initialization with the best previous solution guarantees that OPT always return it in case no 

better solution was found. While using the random initialization method, OPT might return a worse 

solution specially if the time slot available to run OPT algorithm is heavily constrained.  

On the other side, initializing all particles with the optimum solution found in the past reduces the 

possibility of the PSO scan several different regions of the search space. This would restrict the 

chances of the algorithm to search for a new optimum that is radical different from the one found in 

the past interval. Therefore, the best results are expected by arranging a set of initial particles that is 

a combination of some particles that are carefully initialized (e.g.: with the best previous solution) 

with other particles that are randomly initialized.  

 

SEEDS use the following strategies to initialize the particles: 

 

a) Initialise one particle using the last optimal values 

 

The general idea is that one particle is initialized with the optimized control setting that were 

determined in previews OPT. If optimized control settings from previews OPT are missing, then it 

initializes using the control settings for equivalent conditions in the past (control settings at an 

equivalent time exactly one week before). The purpose of this instantiation method is to start the 

PSO closer to the optimal solution and guarantee that if no better solution is found, OPT always 

return an optimized result. 

 

OPT initialize this particle by reading values from two tables in the MySQL database (SEEDS 

Archive) The table “real” is filled with values that were observed in reality from sensors or 

actuators. Therefore, the table “real” refers to values in the past or in the present. The table 

“calculated” is filled with values that were calculated as the output of OPT. Therefore, the table 

“calculated” refers to the forecasts. 

 

Lets consider that the particle has                   dimensions, where              are the 

control signals for the steps 1 until n. 

 

The initial values for               are computed in two different procedures: 
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a)     - OPT reads the values from Archive table “real” with the newest timestamp for all actuators.  

These values correspond to the values of the actuators that are observed in the real equipment. 

These values are used to fill the dimensions of the particle that corresponds to the actuators for the 

first step of forecast. 

b)           - OPT reads the values from the Archive table “calculated” with the timestamps 

matching the correspondent timestamps of the forecasts. These values were calculated by running 

multistep OPT previously, therefore it is expected to be very close to the optimum. 

 

In the advent of the table “calculated” is empty for a required timestamp, OPT searches the table 

“real” instead. Since the required timestamp refers to the future, OPT searches in the table “real” for 

the timestamp one week ago in relation to the desired timestamp.  

 

b) Instantiate one particle with maximum values and another with minimum values 

 

To guarantee that the PSO scans the two extreme poles of the search space, two particles are 

initialized differently. One particle is initialized with the maximum values possible for each actuator 

and another particle is initialized with the minimum values.   

 

c) Instantiate one particle with medium values for the actuators 

 

The medium value that each actuator can assume is used for initialize one of the particles. It is used 

the value of 0.5 for the actuators with binary signals.  

 

d) Instantiate the other available particles randomly 
 

The previous strategies for the initialization presented in this section reflect some assumptions 

given by experts in the domain. However, there are no guarantees that following this assumptions 

leads to the best solution. Therefore, a considerable amount of particles are still initialized by 

attributing values randomly chosen within the range of the actuators.  

 

The total number of particles that we found best in SEEDS is 50. 

 

 

2.1.2 Dynamic OPT call 

 

The concept of dynamic OPT call is to allow the CONTROLLER to call OPT with the different 

periodicity and forecast horizon according to the usage of the building. The controller decides about 

the forecast horizons that OPT will run and the available time that OPT have to compute the results. 

During the regular occupancy period of the building the CONTROLLER should call OPT 

successively in short periods of time. During the long periods of non-occupancy the 

CONTROLLER should call OPT with less frequency and with a bigger time slot, which allows the 

OPT to compute the optimization of larger time horizons. In the context of the present section, the 

non occupancy refers to the time where the building is closed and not working.  

 

The principle of the Dynamic call is illustrated in the next couple of figures. Figure 1 illustrates a 

call to OPT during the period of non-occupancy. In the given example, the CONTROLLER calls 

OPT at the time t1. The call of OPT (method doOptimizing) has two arguments T_n  and T_return. 

The argument T_n represents the number of forecast intervals (i.e.: t1, t2, t3, …) required for the 



SEEDS285150 D5.5 

 

[2014/09/12]  Page 11 of 43 

 

 

 

 

 

optimization to look ahead. In the given example the value of T_n is n. The second argument 

required by the OPT is T_return, which is the moment in time when OPT should finish and OPT 

returns a solution. The argument T_return determines the amount of time that OPT has available to 

compute and when T_now (time now) reaches T_return OPT should return the optimal values found 

so far. In the given example, T_return is tx, which corresponds to the beginning of the building 

occupancy period. Therefore, the time slot for OPT to compute the optimal values for the actuators 

is represented in green and in yellow is represented the forecast horizon to look ahead. When 

T_now reaches tx, OPT stops the PSO and return an array with the best set of control settings for 

every timestamp in the forecast horizon (i.e.: ut2, ut3, ut4, …, utx, …, utn). 

 

  

 

 
Figure 1. Example of Dynamic OPT call during the Non occupancy period. 

 

Figure 2 illustrates a call to OPT during the period of occupancy. In the given example, when 

T_now reaches the moment tx, the CONTROLLER calls OPT assigning the number of forecast 

intervals as 3 and the return time as tz. When T_now reaches the moment tz, OPT stops the PSO 

and return an array with the best set of control settings for the 3 timestamps in the forecast horizon 

(i.e.: NEWutz,…). In this case, the available time slot for OPT to compute can be very limited, 

however the algorithm uses the initialization strategies presented in 2.1.1 to accelerate the 

convergence. Since these strategies take into account the optimal results previously calculated, the 

optimum found during the occupancy of the building is expected to be a refinement from the 

solution determined previously in the non-occupancy period. This expectation is justified by the fact 

that the new PSO output is based upon more accurate predictions from SL. The prediction of SL has 

tendency to degrade when the forecast is too far from the present moment in time due to the fact 

that SL depends on the weather forecasts.  

 

Forecast time look ahead 
Time slot for OPT 

doOptimizing(T_n, Tx) returnOPT(ut2, ut3, ut4, …, utx, …, utn) 

Non working period Working period 

t1 
t2 …                                                            tx                                                                                        tn  
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Figure 2. Example of Dynamic OPT call during the Occupancy period. 

 

 

The setting of the regular occupancy period and the non-occupancy period varies with the building. 

The beginning of the period of occupancy should be defined some moments before the building 

start to be used. This way, the building can meet the comfort step when the users of the building 

arrive. In the case of the University of Stavanger the regular occupancy period corresponds to the 

interval in between 7:00 and 20:00 every working day. The non-occupancy period correspond to the 

interval in between 20:00 and 7:00 of every working day and includes the weekends and holidays. 

Obviously a building that has a different propose should have a different definition of these periods. 

The definition of the occupancy periods is set in the database and SEEDS OPT automatically adapt 

to the new definition. This allows the SEEDS system to be easily implemented in different types of 

buildings. 

 

In the demonstrators of Madrid and Stavanger the CONTROLLER calls OPT during the occupancy 

periods with a periodicity of 10 min and with the total forecast horizon of one hour. During the non-

occupancy periods the CONTROLLER calls OPT with a forecast horizon of 24 hours and with a 

time slot of more than 6 hours. 

 

During the periods of non-occupancy since no person is expected to be in the building, meeting 

comfort is not a priority of SEEDS. Therefore, during the non-occupancy period the values sent to 

the actuators are the optimal values calculated during the previous non-occupancy period. This 

happens because during the non-occupancy the OPT is using all the available computational power 

to calculate the optimal values for the next 24 hours. The present solution is the best trade-off found 

to allow SEEDS algorithm to run in inexpensive commodity computer hardware and avoid the high 

costs of supercomputing, servers or computer clusters. 
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The combination of the Dynamic OPT strategy with the Smart Initialization of the PSO particles 

allows together to solve a complex optimization problem by dynamically adjusting the OPT to meet 

the limited availability of modest computational resources. 

 

 

2.1.3 Dynamic restrictions of the search space 

 

The building manager can change the range of values for the actuators in the Archive. This change 

can be a reduction of the range of the actuators, dynamically set according to the season and the 

characteristics of the equipment. OPT is prepared to seamlessly adapt to a change of a certain 

equipment as long as the range is changed in the Archive. Therefore, if the building manager finds 

it appropriated, he/she can reduce the range of values for each actuator in the Archive according to 

the season. OPT dynamically adopts the new range and therefore the size of the search space and 

the complexity of the optimization problem is reduced. If the building manager does not have the 

seasonal information, then it should set the range of actuators as provided by the manufacture of the 

equipment. 

 

For the demonstrator of Stavanger the range of some actuators was defined according to this 

strategy. For the sake of simplicity the same values are used during the whole year. The values are 

presented in the next table. 

  
Table 1. Range for the different actuators (Stavanger) 

Actuator Range 

Air supply temperature in AHU  [16,24] 

Volumetric flow values [30,100]  

Electric Radiators {0,1} 

Indoor light control {0,1} 

  

  

2.2 Optimization of different types of energy 

 

SEEDS main aim is to optimize the energy consumption maintaining user comfort. Energy in a 

building can be supplied by different sources. . For example, the SEED demos use energy from 

different types: electrical, thermal and fuel. The administrator of the building may want to favour 

the optimization of the energy consumption of one type in detriment of another type. The criterion 

for weighting different energy types can be as simple as financial, environmental or it can be a 

complex combination of different criterions in different proportions. Criterions may be altered to 

follow politics, national strategies and new findings in science. For these reasons it is an advantage 

that OPT deals with the possibility of optimizing energies from different sources according to a 

criterion defined by the building administrator. To meet this requirement the OPT cost function 

presented in D5.3 (Esteves, 2013) was slightly modified. The modification is related with the 

calculation of   and it is presented in the equation 1.  

 

ê                           

 (eq. 1) 

where: 

      ,    are 3 different energy types 
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          are the weights for the corresponding energy types 

 

The cost function is presented in the equation 2. 

 

      ̂  {
      ̂      

   ̂      ̂    
       (eq. 2) 

where:  

   is the cost function 

   is the predicted energy consumption for a candidate control settings  

  ̂ is the predicted comfort level 

 wl is the lower comfort boundary 

 wh is the higher comfort boundary 

   is the penalty score as defined in D5.3   

  

In SEEDS the building administrator defines the weights of each different type of energy in the 

database. The building administrator can define different values of a certain weight to different 

moments in time (e.g.: a different weight for the energy type A for certain hours of the day). OPT is 

set by default with all weights with value one. 

 

For the Stavanger pilot OPT uses the default weight values, whilst for the Madrid pilot the weights 

are defined in the table 2. The coefficient used in Table 2 favour chemical energy (natural gas) 

versus electricity because of the lower primary energy and CO2 emissions involved. Since hourly 

coefficients for primary energy or CO2 have not been found, the coefficients in the table are based 

on cost which is closely related to the above parameters. 
Table 2. Energy Weights for Madrid demo2 

Summer Winter  Energy Weights 

11:00 - 15:00 18:00 – 22:00 ê              

00:00 – 08:00 00:00 – 08:00 ê              

Rest of the day Rest of the day ê              

 ê – total predicted energy;    – predicted electrical energy;    – predicted chemical energy 

2.3 OPT algorithm 

 

This section starts by presenting a description of some values and variables relevant for the OPT 

bundle. It presents the implemented version of the OPT algorithm in pseudo-code. It does not 

always follow objected oriented convention in order to be understandable for non-programmers.  

                                                  
2 Explanations for the values in this table are presented in the D8.1 (Jimenez et al., 2012). 
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Some explanatory comments are shown in green font. For the sake of simplicity, the description 

does not elaborate on methods that are specific for controlling the PSO.  

In order to be clearer for the reader, the algorithm for optimization of the Temperature and Air 

Quality is presented separately from the Illuminance. A call to OPT runs the optimization of 

Temperature and Air Quality and the optimization of the Illuminance. 

 

 

2.3.1 Temperature and Air Quality optimization 

 

The OPT algorithm starts by fetching data from the database. The fetch data is a time series where 

the first timestamp corresponds to the moment when OPT is called. The following timestamps 

corresponds to the time steps required by optimization to look ahead. Examples of these time series 

are the boundaries for occupancy and no occupancy, comfort set points, status of the actuators, and 

environmental variables. The values correspondent to the timestamps in the present is read for the 

tables “real” existing in the database. The values for the timestamps that take place in the future are 

read from the tables “calculated”. Then the OPT proceeds with the initialization of the particles that 

constitutes the PSO swarm. Details about the initialization procedure can be found in the section 

2.1.1 “Initialization of the PSO”. The PSO loop runs the first iteration. In each iteration of the loop, 

the PSO computes the fitness of the particles that constitutes the swarm. As explained earlier, in the 

SEEDS context a particle is a multi-dimensional vector where each value corresponds to the status 

of an actuator. The fitness is the value of the cost function and a lower value means a fitter particle. 

For computing the cost function of a particle, it is necessary that OPT has predicted values from SL 

for all the time steps required by optimization to look ahead. To get the predicted values it is 

necessary to chain the calls to SL for those time steps in a loop. In this loop, the output of the SL for 

a given step is the input for the SL in the next step.  In each step of the chained loop, the output of 

the SL is also checked if it meets the comfort requirements for that time step. If the output of SL 

fails to meet the required comfort requirement for a certain time step, this chained loop terminates 

immediately and the particle is automatically considered unfit. It is worth mentioning that this 

chained loop has to be re-computed for every particle and for every iteration of the PSO. After 

computing the SL for the last time step (unless the particle was not prematurely rejected as unfit) 

the fitness for that particle is given by computing the cost function. After the fitness been evaluated 

for all the particles of the swarm, the fitness is used for computing the position of the particles for 

the next PSO iteration. At this point the first iteration of the PSO is over and the PSO loops until the 

time slot defined by the CONTROLLER is over. When the time slot is over, the PSO loop 

terminates and the coordinates of the best particle are the optimal control settings for temperature 

and air quality. OPT calls the method for optimize the illuminance and the results are added to the 

optimal control settings for Temperature and Air Quality. OPT returns the optimal values to the 

CONTROLLER and the call to OPT finishes. The CONTROLLER writes in the database the 

optimal values. 
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Figure 3. Optimization sequence diagram for SEEDS 

 

Without being exhaustive the main methods used by OPT are presented in pseudo-code in the next 

pages, allowing a clear understanding of some details of the algorithm. 

 

 

2.3.2 Pseudo code 

2.3.2.1 Necessary control settings (UiS Pilot) 

 Electric Radiators  

   Uses java identifier Elrad_onoff.java 

   Possible values (0,1) 

 Volumetric flow  

Uses java identifier Svfc.java 

	
sd	doCostFunc

Optimizing Self- LearningSelf- LearningFitness

loop	PSO

T_now <	 T_return

initializeSwarm

DB	Access

Controller

getData

<<Data>>

doCostFunc

doSelfLearning

<< SelfLearningResults>>

evaluateFitness

loop	swarmParticles

lastParticle	==FALSE

<< FitnessResults>>

evaluation

update_ gbest

locate_gbest

setData

best_gbest

calcBoundaries

loop	forecastSteps

lastSetp==FALSE
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Possible values [30,100] double  

 Air supply temperature in AHU  

  Uses java identifier Sp_supair_temp.java  

  Possible values [16,24] double  

  

2.3.2.2 Values to read from the database (UiS Pilot) 

Room Temperature boundaries for no occupancy  

(setup by the system administrator) 

Upper and lower Temperature boundaries  

In the following pseudo-code we use upper_temp_empty  and lower_temp_empty 

  Variable type double 

Room Temperature boundaries when occupancy 

(setup by the system administrator to avoid malfunction by the  user) 

  Upper and lower Temperature boundaries  

In the following pseudo-code we use upper_temp_occu and lower_temp_occu 

  Variable type double 

 Room Temperature 

The temperature read by the sensor 

Uses java identifier In_temp.java 

  Variable type double 

Room CO2 boundaries for no occupancy  

(setup by the system administrator) 

  Upper CO2 boundary 

In the following pseudo-code we use upper_CO2_empty 

  Variable type double 

Room CO2 boundaries for occupancy  

(setup by the system administrator) 

  Upper CO2 boundary  

In the following pseudo-code we use upper_CO2_occu 

  Variable type double 

 Room CO2 

The CO2 level read by the sensor 

Uses java identifier In_airq.java 

  Variable type double 

 Room Occupancy 

Provides info if the room is occupied or not for the moment Tx 

  Uses java identifier Movement.java 

  Variable type Boolean 

It should use the info from the movement sensor or read the occupancy tables 

according to the moment in time 

Temp User Comfort 

 Temperature increment/ decrement set by the user 

  Uses java identifier User_comf_level.java 

  Variable type double 

Control Settings (CS) 

  Previously described in Control Settings 
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2.3.2.3 Arguments for calling OPT 

 

 T_n - the number of time steps required by optimization to look ahead  

T_return – the time when OPT call should finish and OPT returns a solution. It determines 

the amount of time that OPT has available to compute and return results 

  

2.3.2.4 Method doOptimizing 

 

doOptimizing () { 

 

#CS_swarm is the set Control Settings (CS) for the several particles of the swarm.  

#CS_swarm = {CS for the particle1, particle 2, …}; 

# CS = {Control Settings for time step 1, time step 2, …, last step} 

CS_swarm = smartInitPSO() 

  

SumEnerg = 0 

 

Time_begin = time_now() # Beginning time of the optimization call 

 

#Get the Boundaries defined by the BEM administrator for Occ and no Occ  

OB = getBEMboundariesDB() 

 

#Comfort  Set Point from DB (i.e.: desired Comfort defined by the user in the reality) 

SP_now = getComf_SP_DB() 

 

Occ_now = getOcc_DB(Time_begin) #Occupancy now 

 

#Compute PSO while there is still time left 

WHILE (time_now() < T_return) DO { 

 

FOREACH particle DO { 

 

Tx = Time_begin #Beginning time of the optimization call 

 

#Cost function evaluation for a candidate particle.  

C = doCostFunc(Tx, T_return, OB, CS) 

               

#Fitness of the several particles per iteration 

evaluateFitness(C)  

 

IF (time_now() > T_return) THEN  

BREAK FOREACH 

} 

 

              updatePbest() #Updates the best CS found so far 

 

#Determines next set of CS to evaluate 

              CS_swarm = updateParticlesPosition()  
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        } 

 

#Convert Continuous variables to discrete (only for the discrete actuators Electric Radiators 

       Pbest = cont2disc(Pbest)  

 

       #sets the value of the best CS found  

       setDB(Pbest)  

        

       RETURN(Pbest) 

} 

 

2.3.2.5 Computation of the Cost Function  

 

#To be easier to understand, some variables are not explicitly defined as arguments. If some 

variables are not defined here, it is considered to be implicitly passed from the calling function 

doCostFunc (Time Tx, Time T_return, BEMboundaries OB, ControlSettings CS) { 

 

 Ti= Tx 

 

#Loop of calls to SL chained for every time steps of the forecast horizon  

 WHILE (Ti  < T_return) DO { 

 

      P = doSelfLearning(Ti, CS.Ti) #Predicts Temp,CO2,E,Occ,SP 

 

      #If Ti is now then use the SP and Occ from DB 

      IF (Ti == Tx) THEN  

B = calcBoundaries(SP_NOW, Occ_Now, OB) 

        

      #ELSE use the SP and Occ from SL 

       ELSE  

B = calcBoundaries(Ti, P.SP, P_Occ, OB) 

 

       #Sums all the different energy types and apply coefficients (a,b,etc) to weight the 

energies. Note: by now a and b are 1 

P.E = a * P.E.Ele + b*P.E.Chemic + … 

 

       #Checks if Comfort is met 

      IF ((B.lower_temp<P.Temp< B.UPPER_TEMP_USER)  

  AND (P.CO2< B.UPPER_CO2_USER))  

               THEN SumEnerg=SumEnerg+P.E             

     ELSE SumEnerg=SumEnerg+doPenalty() 

        

      Ti=Ti+deltaT 

} 

 

RETURN(SumEnerg) 

} 
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2.3.2.6 Method to get the Boundaries for occupancy and no occupancy from DB 

 

#Boundaries defined by the BEM administrator   

 

getBEMboundariesDB (Time T) { 

 

GET from DB for all rooms for the time T 

 

{ 

 

 Room Temperature boundaries for no occupancy  

 Room Temperature boundaries when occupancy 

 Room CO2 boundaries for no occupancy 

 Room CO2 boundaries for occupancy  

 

 } 

 

  RETURN boundaries 

 

} 

 

 

2.3.2.7 Method to get Comfort_SP from DB for the present moment 

 

getComf_SP_DB (Time Tnow) { 

 

GET from DB for all rooms for the time Tnow 

 

{ 

 

   Room User_comf_level + In_temp  

 Room In_airq 

  

} 

 

  RETURN SP 

 

} 

 

2.3.2.8 Method to compute Comfort Boundaries  

 

calcBoundaries (Comfort_SP SP, Occupancy Occ, OccBoundary OB) { 

 

 DECLARE B #Structure that will contain the comfort Boundaries 
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 IF (Occ  == TRUE)  { 

 

  IF (SP. Temp + 1 < OB.upper_temp_occu) THEN 

   B.upper_temp= SP.Temp + 1 

  ELSE  

   B.upper_temp= OB.upper_temp_occu 

  IF (SP.Temp - 1 > OB.lower_temp_occu) THEN 

   B.lower_temp= SP.Temp - 1 

  ELSE  

    B.lower_temp= OB.lower_temp_occu 

  B.upper_CO2_user = B.upper_CO2_occu 

 }  

ELSE { 

 

  B.upper_temp= OB.upper_temp_empty 

 

  B.lower_temp= OB.lower_temp_empty 

 

  B.upper_CO2= OB.upper_CO2_empty 

 

 } 

 

 RETURN(B) 

 

} 

 

2.3.2.9 Method for the PSO initialization  

 

# Set initial values of the PSO particles. It helps the PSO to converge faster to the optimum. It also 

guaranties that OPT will return the previous optimized Control Settings if no better solution is 

found. 

 

smartInitPSO() { 

 

#T_last_step = Time that last step shall start (T_return – deltaT)  

 

CS = GET from DB the Control Settings for the time (Tnow) … (T_last_step) 

 

#If any of CS values does not exist in the DB, use a value for the equivalent time from the 

previous week 

 IF (CS == EMPTY) THEN 

  CS = GET from DB for T (Tnow – 1week)…(T_last_step - 1week) 

 

 Instantiate one particle with CS values  

Instantiate one particle with MAX CS possible values  

Instantiate one particle with MIN CS possible values 

Instantiate the other available particles randomly 
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#set other required parameters for PSO 

setParamPSO() 

 

#CS_Swarm are the initial control settings for the several particles of a SWARM  

RETURN (CS_swarm) 

} 

 

2.3.2.10 Method to set other required parameters for PSO 

 

setParamPSO() { 

 

Number of particles = 10 #should be posterior re-adjusted according to the results 

 

Local exploration constant= 0.5+log(2) #should be posterior re-adjusted according to the 

results 

 

Global exploration constant= 0.5+log(2) #should be posterior re-adjusted according to the 

results 

 

Number of particles informants= 3 #should be posterior re-adjusted according to the results  

 

Maximum velocity not clamped #should be posterior re-adjusted according to the results 

 

Number of iterations = the maximum amount that can be run during the OPT call  

 

} 

 

2.3.3 Illuminance comfort optimization 

The control of illuminance is only present in Stavanger pilot. The method for optimizing the 

illuminance is called by OPT. This call occurs after computation of the optimal control settings for 

the Temperature and Air quality. 

 

  

2.3.3.1 Necessary control settings for illuminance  

Indoor light control 

  Uses java identifier Inlight_onoff.java 

   Possible values (0,1) 

 

2.3.3.2 Values to read from the database 

Room Last Occupancy 

Provides the timestamp when the last movement was observed in the room   

In the following pseudo-code we use Last_Occ 

  Variable type double 

The value is obtained through a query to the DB 

 Room Light level 

  Luminance inside of a room 
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  Uses java identifier Lighting.java 

  Variable type double 

Room Light boundaries 

(Max and minimum values of light indoor when the room has occupancy 

(setup by the system administrator) 

In the following pseudo-code we use LUX_MAX and LUX_MIN 

 Variable type double 

Indoor light control 

  Uses java identifier Inlight_onoff.java 

   Possible values (0,1) 

 

2.3.3.3 Method for optimization of the illuminance 

 

doLightOPT (Time T) { 

 GET from DB for all rooms for the time T { 

  LUX_MAX 

  LUX_MIN 

  Inlight_onoff  

} 

QUERY DB about Last_Occ for all rooms 

 

FOREACH room { 

 IF ((Inlight_onoff ==ON) { 

Delta_T = time_now() – Last_Occ # Delta_T is the time interval between 

the last observed user in the room and the present time  

 

If (Delta_T < TMD )  # TMD is a Maximum time interval threshold for a 

room to be occupied 

 Occ= TRUE 

ELSE Occ = FALSE  

 

IF (Occ==FALSE))  

Inlight_onoff =OFF 

IF (Occ==TRUE) AND (lighting>LUX_MAX+200)) 

  Inlight_onoff =OFF 

 } 

} 

 RETURN(Inlight_onoff)  

}  
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3 Prediction of User and Process Behaviour and Energy Consumption 

3.1 Architecture of the Self-Learning components 

 

Figure 4 presents the main sub-components of the Self-learning component. The Self-learning 

component, like Controller, adopts the Mediator design pattern (Gamma, et al. 1995). The process 

of forecasting is handled by the SelfLearingForecast bundle and the process of training is handled 

by the SelfLearningTraining bundle. The interfaces ISelfLearningForecast and 

ISelfLearningTraining are described in detail in Sections 3.3 and 3.4, respectively. 

 

 
Figure 4. Component diagram for SelfLearning 

 

3.2 Configuration 

 

The Self-learning component is configurable. This eases the configuration for both the UiS and 

Madrid demonstrators. Self-learning has been developed in a modular manner whereby its 

configuration is modularized into a single bundle. This enables easy adaption and configuration. For 

example, one only needs to change the variables used in Self-learning in a single place: the 

configuration bundle.  
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In order to configure the Self-learning bundle for a particular building, the input and output 

variables must be specified. Details of the variables can be found in Deliverable 2.9 (Donath, 

Wurm, et al. 2014). These are dependent on factors such as the number of rooms and the type of 

equipment in use.  The output variables that are forecast by Self-learning for the UiS and Madrid 

demonstrators include the following: 

 Set point of indoor air temperature 

 Indoor air temperature 

 Indoor air quality level 

 Lighting level 

 Room use (occupied or unoccupied) 

 Electrical energy required 

 Chemical energy required 

 Thermal energy provided 

 Luminous energy provided. 

 

Self-learning is also generic in that a range of Self-learning methods can be used. The Self-learning 

component relies on the Weka framework for the implementation of the various methods. The 

configuration specifies the Self-learning method used and the parameters associated with that 

method. For example, in the UiS and Madrid demonstrators, feed-forward neural networks were 

used. However, other methods such as decision tree learning and Bayesian networks could also be 

selected. 

3.3 Forecasting 

 

Self-learning is configured so that each output variable described above has a corresponding model. 

The ISelfLearningForecast interface (Figure 5) is implemented by the SelfLearningForecast bundle. 

A model is encapsulated in the SelfLearningTrainingResult class. This class is described in Section 

3.4.  

 
Figure 5. ISelfLearningForecast interface 

 

An implementation of ISelfLearningTraining can return a model that has been trained (Section 3.4). 

The interface contains methods to initialise the models (Table 3), to update a model(s) (Table 4, 

Table 5) and to return forecasts based on the models that are currently in use (Table 9). 
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Table 3. init method 

public void init(Map<String, SelfLearningTrainingResult> trainingResults) 

Initialise one or more models. 

trainingResults:  A mapping from an identifier to the model used to make a forecast for that identifier. 

 
Table 4. update method 

public void update(Map<String, SelfLearningTrainingResult> trainingResults) 

Update one or more models. 

trainingResults:  A mapping from an identifier to the model used to make a forecast for that identifier. 

 
Table 5. update method 

public void update(String identifier, SelfLearningTrainingResult trainingResult) 

Update the model for an identifier.   

identifier:   

trainingResult: 

An identifier. 

A model used to make forecasts for that identifier. 

 
 

Table 6. refresh method. 

public  void refresh() 

Use the model that have recently been updated 

 

 

Table 7. getPredictions method. 

public  Set<String> getPredictions() 

The identifiers about which forecasts can be made.   

returns: The identifiers about which forecasts can be made. 
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Table 8. getForecasts method. 

public void getForecasts(Map<String, Intances> controlSettings, long actualTime, int cycleNumber, int 
stepNumber, long stepTime) 

Return forecasts based on the control setting, optimisation cycle for a given step.    

controlSettings:   

actualTime: 

cycleNumber: 

stepNumber: 

stepTime: 

The control settings. 

The actual timestamp of the Optimization cycle. 

The number of the Optimization cycle. 

The number of the step within an Optimisation cycle. 

The timestamp of the step within an Optimisation cycle. 

 

Consider Figure 6. ISelfLearning can get the latest models from ISelfLearningTraining by invoking 

the getTrainingResults method (Section 3.4). ISelfLearningForecast separates the updating of a 

model from its subsequent use to make forecasts. This is achieved by calling the update and refresh 

methods, respectively. 

 
Figure 6. Updating of models for Forecasting 

 

Self-learning must decide when to update forecasting. In Figure 6, this is represented by the guard 

condition refreshForecastModels. The strategy adopted by Self-learning is to use the same model 

for forecasts within an Optimisation cycle. However, a model can be updated between Optimisation 

cycles. 

3.4 Training 

The ISelfLearningTraining interface (Figure 7) is implemented by the SelfLearningTraining.  
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Figure 7. ISelfLearningTraining interface 

 

Table 9. getTrainingResults method 

public void getTrainingResults(): Map<String, SelfLearningTrainingResult> trainingResults 

For each identifier, return the associated model that has been trained.   

returns: A mapping from identifier to models. 

 

In practice, the SelfLearningTraining bundle returns the latest models that have been trained. 

However, an alternative implementation of ISelfLearningTraining could use criterion such as 

ongoing performance as a basis for determining what should be returned.  

SelfLearningTraining evaluates the performance of each model using the shouldRetrain method and 

can advise as to whether or not training is needed (Table 10). The forecasts made by a model play a 

role in the evaluation. The evaluation of the performance of a model will be discussed further in 

Section 3.4.1. 

Table 10. shouldRetrain method 

public boolean shouldRetrain(long trainingTime, String identifier) 

Advise whether or not training should occur.    

 trainingTime:  

 identifier:  

 return:  

The training time of the model under consideration.  

The identifier of the model under consideration.  

Whether training is either advised or not advised.  
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Table 11. getTrainingResults method 

public void getTrainingResults(): Map<String, SelfLearningTrainingResult> trainingResults 

For each identifier, return the associated model. 

returns:  A mapping from identifier to models. 

A model is encapsulated within the SelfLearningTrainingResult class (Figure 8). The model itself 

takes the form of a Classifier as implemented by Weka (Table 12).   

 
Figure 8. SelfLearningTrainingResult class 

 

The SelfLearningTrainingResult class also includes information about the training data that was 

used to train the model (Table 12).  
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Table 12. Fields of the SelfLearningTrainingResult class 

Field Name Description 

mClassifier:  The Weka model used to make forecasts. 

mFeatureVector The feature vector of the model, where the feature names are based on SEEDS identifiers. 

mForecastPeriod The forecast period of the model. 

mInstances The dataset that Weka uses to represent the features, include feature name and type. 

mLastInstanceTime The timestamp of the last instance used for training. 

mNumberInstances The number of instances in the training data. 

mParameters The parameters used for trained as defined by Weka and MOA 

mPrediction The SEEDS identifier that is forecast by the model. 

mSamplePeriod The time period between successive instances in the training data.  

mTrainingTime The timestamp when the model was trained.  

Thus, given the data used to train the model, the information about training can be used to 

reproduce the model from scratch.  

 

As discussed in Section 3.2, the choice of Self-learning method is stored in the configuration. In the 

UiS and Madrid demonstrators, feed-forward neural networks were used, but other methods such as 

decision tree learning and Bayesian networks could also be selected. The precise parameters can be 

found in Deliverable 5.2 (Vadera, et al. 2013). 

 

The features used by a model are specified in a feature vector which specifies the input features and 

output feature of a model. Each feature can be categorized into three distinct categories: provided 

features, derived features and predicted features (Donath, et al. 2013) A provided feature reads a 

value directly from the Archive. A derived feature, in addition to reading a value from the Archive, 

also applies a filter. Finally, a predicted feature outputs the value of a forecast. This predicted 

feature is set as the class for the model.   
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Figure 9. Feed-forward Neural Network for forecasting Indoor Temperature 

 

Table 13 shows the features of a model. For the sake of clarity, for the feature names we use the 

class names that correspond to an identifier. 

 
Table 13. Feature Vector for a model 

Feature Description Feature Category 

Out_temp 

 

Outdoor air temperature from weather 

station 

Provided 

In_temp 

Indoor air temperature (air temperature 

sensor) 

Provided 

ΔIn_temp 

Change in Indoor air temperature (air 

temperature sensor) over a given time 

interval 

Derived 

In_airq 

Indoor air quality level / Rooms CO2 

concentration (CO2 sensor) 

Provided 

In_temp_sl_prd 

Indoor air temperature predicted (air 

temperature sensor) 

Predicted 

 

3.4.1 Evaluating the performance of model 

A key question for SelfLearning is at what point should a new model be produced? 

SelfLearningTraining becomes aware of the forecasts that have been made by querying the Archive. 

The shouldRetrain method uses this information to then make an informed decision based on the 

performance of the model to date.  

 

In practice, the implementation of the shouldRetrain method by SelfLearningTrainings adopts a 

metric to continuously evaluate the accuracy of model. The metric compares the values of the 

forecasts made by a model with the actual values read from the sensors and stored in the SEEDS 



SEEDS285150 D5.5 

 

[2014/09/12]  Page 33 of 43 

 

 

 

 

 

Cache.   As soon as the value of the metric deviates from a given threshold, then shouldRetrain 

method advises that training should occur. SelfLearning then follows this advice and initialises 

training (Figure 10).  

 

As shown below, there are various standard metrics that can be adopted:  

 

Mean absolute error (MAE) 
∑

|                |

 
 

Mean squared error (MSE) 
∑

                   

 
 

Root mean squared error (RMSE) 

√∑
                   

 
 

Mean absolute percentage error (MAPE) 

∑
|
                  

      
|

 
 

 

where N is the number of observations, predicted is the forecasted value and actual is the actual 

value. The metric adopted by Self-Learning is the Root Mean Squared Error (RMSE).  In each case, 

only the forecast made in the first step of the multi-step forecast are considered.  

 

 
Figure 10. Evaluate the performance of a model. 

 

3.4.2 Data Flow into a Model 

A significant advance in SEEDS is that Self-learning can change a model on-the-fly at run-time. In 

particular, the features of a model can change. As discussed above, this occurs when a new model is 

produced. Self-learning uses the features of a model to determine the data that flows into that 

model.  

Consider Figure 11. At start-up, the feature vector is initialized from a file on disk. This file is 

provided by a human. Subsequently, the feature vector is read from memory and it is provided by 

the SelfLearningTraining component itself. 
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Figure 11. Configuration of a feature vector. 

 

Table 13 and Table 14 show the features of a model, before and after a change has taken place. We 

omit the class feature as its values are dependent on whether the model is used for forecasting or 

training. As before, we use the class names that correspond to an identifier for the feature names. 

 
Table 14. Model after change 

Feature Description Feature Category 

Out_temp 

Outdoor air temperature from weather 

station 

Provided 

In_temp 

Indoor air temperature (air temperature 

sensor) 

Provided 

ΔIn_temp 

Change in Indoor air temperature (air 

temperature sensor) over a given time 

interval 

Derived 

In_airq Indoor air quality level / Rooms CO2 

concentration (CO2 sensor) 

Provided 

In_hum 

Return air relative humidity (Humidity in 

the room)  Indoor relative humidity (RH 

sensor) 

Provided 

In_temp_sl_prd 

Indoor air temperature predicted (air 

temperature sensor) 

Predicted 

 

The data flow into a model is represented as a data stream. Table 15 and Table 16 show the data 

stream into the model before and after the change above. The model is updated at 10:30 and this 

change comes into effect immediately. We can see that the addition of the indoor humidity feature 

drives a corresponding change in the data flow into the model. 
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Table 15. Data stream before change 

Time Out_temp In_temp ΔIn_temp In_airq 

10:10 13 15 0 20 

10:20 13 15.5 0.5 20 

 

Table 16. Data stream after change 

Time 
Out_temp In_temp ΔIn_temp 

In_airq In_hum 

10:30 13 15.5 0 21 71 

10:40 13.1 15.5 0 21 71 

 

Self-learning relies on the MOA (Massive Online Analysis) framework for the implementation of a 

data stream. Indeed, MOA and Weka are closely related. This is an advantage as MOA can 

seamlessly interface with the learning method provided by Weka. More information on the use of 

Weka with MOA can be found in the MOA documentation.  

3.5 Performance improvement through Advanced ICT solutions 

3.5.1 Caching 

As identified in Deliverable 5.3 (Esteves 2013) , the time taken to make forecasts was considered a 

bottleneck for Optimisation in the early implementations of Self-Learning.  

 

Although the time taken for each call was 0.4s, the number of calls made by Optimisation meant 

that this needed to be reduced. Hence, several solutions were considered; the most effect approach 

was to use caching. Its introduction has lead to a significant speed up. 

 

A feature can be shared by more than model and between different steps in the multi-step forecast 

process. In the previous implementation, a feature was retrieved from the Archive multiple times 

and its value recomputed. However, with the introduction of a cache a feature is retrieved once from 

the Archive and its value computed.  
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Figure 12. Example of Caching in SelfLearning 

 

Figure 12 illustrates one such case. In the first step of a multi-step forecast, the value of a feature is 

taken from the Archive. If not already loaded, the cache will query the Archive and compute the 

feature. This occurs only once. Subsequent requests to fetch the feature will use the already loaded 

value and not query the Archive.  

 

The SelfLearning bundle uses caching mechanism  provided by the Google guava library. As shown 

in Figure 13, both SelfLearningTraining and SelfLearningForecast use this library. In particular, 

they use the class LoadingCache. This class returns the value associated with a feature in the 

cache, first loading that value if necessary.   
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Figure 13. Component diagram for Caching in SelfLearning 

3.5.2 Concurrency 

There is scope for using concurrency in Self-learning. The models used by Self-learning are mostly 

independent. This fact can be used SelfLearningForecast and SelfLearningTraining, respectively. 

Self-learning uses the concurrency library provided by Java. SelfLearningForecast can make 

multiple forecasts in parallel and SelfLearningTraining can train multiple models in parallel. At run-

time, a model can share features. However, the implementation of the LoadingCache class can 

handle multiple threads requesting the value for the same feature. The use of concurrency has 

resulted in a significant speed up for both the forecasting and training processes. 

 

3.5.3 Deployment 

SelfLearningTraining is not dependent on SelfLearningForecast. As such, SelfLearningTraining can 

be deployed on a separate instance of the Eclipse Equinox framework. This has the added advantage 

that competition between SelfLearningTraining and SelfLearningForecast for resources is reduced. 

Figure 14 shows the deployment of the SelfLearningForecast and SelfLearningTraining components 

on separate instances of Eclipse Equinox. Both instances of Eclipse Equinox framework 

communicate by Remote Services provided by the Eclipse Communication Framework (ECF). 
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Figure 14. Deployment diagram for the SelfLearning, SelfLearningForecast and SelfLearningTraining 

components. 
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4 Tests 

During the days 23 and 24 of April of 2014, the developers of the modules OPT SL and 

CONTROLLER met together for code integration, debugging and testing the performance of the 

improved algorithms. 

 

All tests were performed on the same computer with similar performance as the pc installed in the 

pilots. The computer has the following characteristics: 

 Processor: i7-2640M CPU 2.8GHz 

 Memory: 8 GB 

 Hard disk: SSD 

 OS: Windows7, Java 7 32bit 

 

Due to the missing of a real WISAN installation and real data, all tests were performed with a 

WISAN Mock-up. The data generated by WISAN Mock-up are randomly data within realistic 

ranges (e.g.: temperature values within 20 and 25ºC). For this reason, all experiments aim only to 

test the integration and performance of the several algorithms.  

T1) Integration and function test of SL and OPT with the CONTROLLER 

This test consisted in executing the SEEDS bundles together. The aim was to check if the JAVA 

OSGI bundles are able to intercommunicate and successfully interface with each other. To check 

the status of the test, debugging checkpoints were strategically set in the code in a way that the 

values of the variables were controlled in run time.  

After some minor debugging the Self-Learning and OPT was successfully integrated with the 

Controller. 

T2) Parallel execution of OPT and Building Model 

To test if there are concurrency problems, the OPT and the Building Model were called 

simultaneously. The parallel execution of Optimizer and Building Model was successfully 

completed without any errors. 

T3) Performance of the SEEDS software 

This test consisted in executing two distinct experiments: 

 

a) 30 min forecast optimization cycle 

 

OPT was called to optimize control setting with a 30 min of forecast to look ahead. The duration of 

the interval step was 10 min, meaning that OPT was performing a 3 step optimization. To test the 

performance of SEEDS software, the OPT was set with a PSO with 15 particles and 15 iterations.  

The time consumed was 1 min 30 sec. 

 

 

b) 60 min forecast optimization cycle 
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OPT was called to optimize control setting with a 60 min of forecast to look ahead. The duration of 

the interval step was 10 min, meaning that OPT was performing a 6 step optimization. To test the 

performance of SEEDS software, the OPT was also set with a PSO with 15 particles and 15 

iterations.  

The time consumed was 4 min 30 sec. 

 

c) 120 min forecast optimization cycle 

 
OPT was called to optimize control setting with a 120 min of forecast to look ahead. The duration 

of the interval step was 10 min, meaning that OPT was performing a 12 step optimization. To test 

the performance of SEEDS software, the OPT was also set with a PSO with 15 particles and 15 

iterations.  

The time consumed was 7 min 20 sec. 

 

d) Self-Learning Retraining 

SL was called to retrain the neural network in parallel. The integration and parallel execution of the  

The Self-Learning retraining of the neuronal networks went successful and it took 1 min and 8 sec 

to retrain one network. 

 

e) Optimization 8 hours running test 

 

OPT was called to optimize control setting setup with similar conditions as for the previous test. 

The aim was to check the SEEDS Software for stability issues as memory leaks or execution time 

problems.  

As result we verified that the execution time of the Building Model and Optimization remained 

stable. A memory leak was identified and fixed. 

 

The overall results from the improvements introduced in the algorithms are very satisfactory and 

demonstrated that the concerns mentioned in the D5.3 (Esteves, 2013) are effectively minimized. 
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5 Conclusions 

Deliverable 5.3 revealed concerns regarding high execution times for the optimization cycle. The 

identified issues were due to the high computational calls of SL and the high search space of the 

optimization problem. 

SL and OPT implemented several strategies to reduce the execution time: 

 Smart initialization of the PSO particles 

 Dynamic OPT call 

 Dynamic restrictions of the search space 

 Caching  

 Concurrency 

 

By the time of the conclusion of the task 5.5 there is not enough data to train the algorithms and test 

the performance in the demonstrators. However, the improvements introduced in the algorithms 

were tested in a meeting by the partners: UiS, USALF, Fraunhofer, Softcrits and Cemosa.. 

 

These tests were successful in terms of interfacing and the results show that the execution time and 

search space are likely to have been resolved but it is worth noting that at the time of the tests, the 

data available was mock-up data. 

 

In summary, the SL and Optimisation bundles offer an implementation of the SEEDs architecture 

that allows easy adaptation to forecasting for different building types and a specialised use of 

Swarm Optimisation suitable for Energy Optimisation. 

 

Results of the performance of the whole SEEDS system (and therefore, the performance of 

Optimization and Self-Learning) in the SEEDS plot will be reported in D2.9. 
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